Question:

A crystal has monoclinic structure, with lattice parameters \( a = 5.14 \, \text{Å} \), \( b = 5.20 \, \text{Å} \), \( c = 5.30 \, \text{Å} \) and angle \( \beta = 99^\circ \). It undergoes a phase transition to tetragonal structure with lattice parameters, \( a = 5.09 \, \text{Å} \) and \( c = 5.27 \, \text{Å} \). The fractional change in the volume \( \frac{\Delta V}{V} \) of the crystal due to this transition is ............... (Round off to two decimal places).

Show Hint

When calculating the fractional change in volume, remember to use the volume formula for each crystal structure and compare the initial and final volumes.
Updated On: Dec 6, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Correct Answer: 0.02

Solution and Explanation

Step 1: Calculate the initial volume of the crystal in the monoclinic phase.
The volume of a crystal with monoclinic structure is given by \[ V_{\text{monoclinic}} = a b c \sin \beta. \] Substituting the values, \[ V_{\text{monoclinic}} = 5.14 \times 5.20 \times 5.30 \times \sin(99^\circ) \approx 5.14 \times 5.20 \times 5.30 \times 0.9848 = 140.99 \, \text{Å}^3. \] Step 2: Calculate the volume of the crystal in the tetragonal phase.
The volume of a tetragonal crystal is given by \[ V_{\text{tetragonal}} = a^2 c. \] Substituting the values, \[ V_{\text{tetragonal}} = (5.09)^2 \times 5.27 \approx 25.91 \times 5.27 = 136.79 \, \text{Å}^3. \] Step 3: Calculate the fractional change in volume.
The fractional change in volume is \[ \frac{\Delta V}{V} = \frac{V_{\text{tetragonal}} - V_{\text{monoclinic}}}{V_{\text{monoclinic}}}. \] Substituting the values, \[ \frac{\Delta V}{V} = \frac{136.79 - 140.99}{140.99} = \frac{-4.20}{140.99} = -0.0298. \] Step 4: Final Answer.
Thus, the fractional change in the volume is \( -0.03 \).
Was this answer helpful?
0
0