Step 1: Calculate moles of each element:
Moles of A = $\frac{\text{Mass of A}}{\text{Atomic Mass of A}} = \frac{32}{64} = 0.5$
Moles of B = $\frac{\text{Mass of B}}{\text{Atomic Mass of B}} = \frac{20}{40} = 0.5$
Moles of C = $\frac{\text{Mass of C}}{\text{Atomic Mass of C}} = \frac{48}{32} = 1.5$
Step 2: Divide by smallest mole value:
Ratio: $\frac{0.5}{0.5} : \frac{0.5}{0.5} : \frac{1.5}{0.5} = 1 : 1 : 3$
Step 3: Empirical formula:
Empirical Formula: $ABC_3$
Given the mass percentages, we can calculate the moles of each element in 100 g of compound X.
The ratio of moles of A, B, and C is:
A:B:C = 0.5 : 0.5 : 1.5 = 1 : 1 : 3
The empirical formula of X is: ABC3
The correct answer is: ABC3
List I | List II | ||
---|---|---|---|
A | Mesozoic Era | I | Lower invertebrates |
B | Proterozoic Era | II | Fish & Amphibia |
C | Cenozoic Era | III | Birds & Reptiles |
D | Paleozoic Era | IV | Mammals |
List-I | List-II | ||
(A) | ![]() | (I) | ![]() |
(B) | ![]() | (II) | CrO3 |
(C) | ![]() | (III) | KMnO4/KOH, \(\Delta\) |
(D) | ![]() | (IV) | (i) O3 (ii) Zn-H2O |