We are given the inductance \(L = 0.64 \, {mH} = 0.64 \times 10^{-3} \, {H}\), the resistance \(R = 0.8 \, \Omega\), and the voltage \(V = 12 \, {V}\).
To find the energy stored in the magnetic field, we use the formula: \[ E = \frac{1}{2} L I^2 \] First, calculate the current \(I\) using Ohm’s law: \[ I = \frac{V}{R} = \frac{12}{0.8} = 15 \, {A} \] Now, substitute the values into the energy formula: \[ E = \frac{1}{2} \times 0.64 \times 10^{-3} \times (15)^2 \] \[ E = \frac{1}{2} \times 0.64 \times 10^{-3} \times 225 = 72 \times 10^{-3} \, {J} \] Thus, the energy stored in the magnetic field is \(72 \times 10^{-3} \, {J}\).
Match List-I with List-II:
| List-I (Modulation Schemes) | List-II (Wave Expressions) |
|---|---|
| (A) Amplitude Modulation | (I) \( x(t) = A\cos(\omega_c t + k m(t)) \) |
| (B) Phase Modulation | (II) \( x(t) = A\cos(\omega_c t + k \int m(t)dt) \) |
| (C) Frequency Modulation | (III) \( x(t) = A + m(t)\cos(\omega_c t) \) |
| (D) DSB-SC Modulation | (IV) \( x(t) = m(t)\cos(\omega_c t) \) |
Choose the correct answer:
