We are given the inductance \(L = 0.64 \, {mH} = 0.64 \times 10^{-3} \, {H}\), the resistance \(R = 0.8 \, \Omega\), and the voltage \(V = 12 \, {V}\).
To find the energy stored in the magnetic field, we use the formula: \[ E = \frac{1}{2} L I^2 \] First, calculate the current \(I\) using Ohm’s law: \[ I = \frac{V}{R} = \frac{12}{0.8} = 15 \, {A} \] Now, substitute the values into the energy formula: \[ E = \frac{1}{2} \times 0.64 \times 10^{-3} \times (15)^2 \] \[ E = \frac{1}{2} \times 0.64 \times 10^{-3} \times 225 = 72 \times 10^{-3} \, {J} \] Thus, the energy stored in the magnetic field is \(72 \times 10^{-3} \, {J}\).
Identify the correct truth table of the given logic circuit. 
Find the correct combination of A, B, C and D inputs which can cause the LED to glow. 
Select correct truth table. 

Which of the following are ambident nucleophiles?
[A.] CN$^{\,-}$
[B.] CH$_{3}$COO$^{\,-}$
[C.] NO$_{2}^{\,-}$
[D.] CH$_{3}$O$^{\,-}$
[E.] NH$_{3}$
Identify the anomers from the following.

The standard Gibbs free energy change \( \Delta G^\circ \) of a cell reaction is \(-301 { kJ/mol}\). What is \( E^\circ \) in volts?
(Given: \( F = 96500 { C/mol}\), \( n = 2 \))