A Cobb-Douglas type short-run production function is given by \[ q = 2\sqrt{L \overline{K}} \] where \( q, L \) and \( K \) are the output, labour and capital, respectively. \( K \) is fixed at \( \overline{K} \). The unit price of \( L \) is \( w \) and the unit price of \( K \) is \( r \). It is given that \( w = 12 \). Considering the above information, which of the following statements is/are CORRECT?
Step 1: Short-run Total Cost and Marginal Cost
The production function is \( q = 2\sqrt{LK} \), which gives us:
\[ L = \frac{q^2}{4K} \] The total cost function is the sum of the costs of labour and capital:
\[ TC = wL + rK \] Substituting \( L \) into the equation:
\[ TC = w \cdot \frac{q^2}{4K} + rK = \frac{wq^2}{4K} + rK \] Now, substitute \( w = 12 \):
\[ TC = \frac{12q^2}{4K} + rK = \frac{3q^2}{K} + rK \]
Here are two analogous groups, Group-I and Group-II, that list words in their decreasing order of intensity. Identify the missing word in Group-II.
Abuse \( \rightarrow \) Insult \( \rightarrow \) Ridicule
__________ \( \rightarrow \) Praise \( \rightarrow \) Appreciate
In the following figure, four overlapping shapes (rectangle, triangle, circle, and hexagon) are given. The sum of the numbers which belong to only two overlapping shapes is ________