A closely wound solenoid of 800 turns and area of cross section 2.5 × 10-4 m2 carries a current of 3.0 A. Explain the sense in which the solenoid acts like a bar magnet. What is its associated magnetic moment?
Number of turns in the solenoid, n = 800
Area of cross-section, A = 2.5 × 10-4 m2
Current in the solenoid, \(I\) = 3.0 A
A current-carrying solenoid behaves as a bar magnet because a magnetic field develops along its axis, i.e., along its length.
The magnetic moment associated with the given current-carrying solenoid is calculated
as:
M = n \(I\) A
= 800 × 3 × 2.5 × 10-4
= 0.6 J T-1
A current-carrying coil is placed in an external uniform magnetic field. The coil is free to turn in the magnetic field. What is the net force acting on the coil? Obtain the orientation of the coil in stable equilibrium. Show that in this orientation the flux of the total field (field produced by the loop + external field) through the coil is maximum.
Given below is a heterogeneous RNA formed during Eukaryotic transcription:
How many introns and exons respectively are present in the hnRNA?
Magnets are used in many devices like electric bells, telephones, radio, loudspeakers, motors, fans, screwdrivers, lifting heavy iron loads, super-fast trains, especially in foreign countries, refrigerators, etc.
Magnetite is the world’s first magnet. This is also called a natural magnet. Though magnets occur naturally, we can also impart magnetic properties to a substance. It would be an artificial magnet in that case.
Read More: Magnetism and Matter