If a circle touches both coordinate axes, then its center is at \( (r, r) \)
Now, center lies on line:
\[
x - 2y - 3 = 0 \Rightarrow r - 2r - 3 = 0 \Rightarrow -r = 3 \Rightarrow r = -3
\]
But radius can't be negative \Rightarrow Error in direction
Take \( x = r,\ y = r \Rightarrow r - 2r - 3 = 0 \Rightarrow -r = 3 \Rightarrow r = -3 \) contradicts geometry.
Try again:
Let center be \( (a, a) \), substitute in line:
\[
\begin{align}
a - 2a - 3 = 0 \Rightarrow -a = 3 \Rightarrow a = -3 \Rightarrow \text{invalid}
\Rightarrow \text{Try positive radius: } (a, a) = (1, 1)
\Rightarrow x - 2y - 3 = 1 - 2(1) - 3 = -4 \Rightarrow no
Eventually, point \( (1, -1) \) satisfies:
\[
x - 2y - 3 = 0 \Rightarrow 1 + 2 - 3 = 0
\]
So center \( (1, -1) \), radius \( = 1 \)
Equation:
\[
(x - 1)^2 + (y + 1)^2 = 1 \Rightarrow x^2 + y^2 - 2x + 2y + 1 = 0
\]