Let company increases the annual subscription by \(Rs\ x\).
So, x subscribers will discontinue the service.
Total revenue of company after the increment
\(R(x) =(500−x)(300+x)\)
\(R(x) =1500000+500x−300x−x^2\)
\(R(x) = −x^2+200x+150000\)
Differentiate both sides w.r.t, x
\(R^′(x)=−2x+200\)
Now, \(R^′(x)=0\)
\(2x=200\)
\(x=100\)
∴ \(R^{''}(x)=−2<0\)
R(x) is maximum when \(x = 100\).
Therefore, the company should increase the subscription fee by \(Rs.\ 100\), so that it has maximum revenue.
So, the correct option is (A): \(100\)
Match List-I with List-II
List-I | List-II |
---|---|
(A) The minimum value of \( f(x) = (2x - 1)^2 + 3 \) | (I) 4 |
(B) The maximum value of \( f(x) = -|x + 1| + 4 \) | (II) 10 |
(C) The minimum value of \( f(x) = \sin(2x) + 6 \) | (III) 3 |
(D) The maximum value of \( f(x) = -(x - 1)^2 + 10 \) | (IV) 5 |
Choose the correct answer from the options given below:
Match List-I with List-II
\[\begin{array}{|l|l|} \hline \text{List-I (Soil component)} & \text{List-II (Definition)} \\ \hline (A)~\text{Azonal soils} & (I)~\text{An individual natural aggregate of soil particles.} \\ (B)~\text{Regoliths} & (II)~\text{Organisms living in the soil or ground} \\ (C)~\text{Ped} & (III)~\text{Soils have uniformity from the top-surface to the base, and do not have well-developed soil horizons.} \\ (D)~\text{Edaphons} & (IV)~\text{Zone of loose and unconsolidated weathered rock materials.} \\ \hline \end{array}\]
Choose the correct answer from the options given below:
Match List-I with List-II
\[\begin{array}{|l|l|} \hline \text{List I Content of humus} & \text{List II Percentage of contents} \\ \hline \text{(A) Carbon} & \text{(I) 35-40\%} \\ \hline \text{(B) Oxygen} & \text{(II) ~5\%} \\ \hline \text{(C) Hydrogen} & \text{(III) 55-60\%} \\ \hline \text{(D) Nitrogen} & \text{(IV) 15\%} \\ \hline \end{array}\]
Choose the correct answer from the options given below:
If some other quantity ‘y’ causes some change in a quantity of surely ‘x’, in view of the fact that an equation of the form y = f(x) gets consistently pleased, i.e, ‘y’ is a function of ‘x’ then the rate of change of ‘y’ related to ‘x’ is to be given by
\(\frac{\triangle y}{\triangle x}=\frac{y_2-y_1}{x_2-x_1}\)
This is also known to be as the Average Rate of Change.
Consider y = f(x) be a differentiable function (whose derivative exists at all points in the domain) in an interval x = (a,b).
Read More: Application of Derivatives