Step 1: Calculate cost per kg.
  
For variety \(P\):  
\[
\frac{800}{5} = ₹ 160 \ \text{per kg}
\]  
For variety \(Q\):  
\[
\frac{800}{4} = ₹ 200 \ \text{per kg}
\]  
  
Step 2: Effective cost price of mixture.
  
Selling price = ₹ 192 with 8% profit.
  
So,  
\[
\text{CP of mixture} = \frac{192}{1.08} = ₹ \frac{1600}{9} \approx ₹ 177.78
\]  
  
Step 3: Use weighted average.
  
Let the ratio be \(P:Q = x:y\). Then,  
\[
\frac{160x + 200y}{x+y} = \frac{1600}{9}
\]  
Multiply across:  
\[
9(160x + 200y) = 1600(x+y)
\]  
\[
1440x + 1800y = 1600x + 1600y
\]  
\[
160x = 200y   \Rightarrow   \frac{x}{y} = \frac{5}{4}
\]  
  
Step 4: Conclusion.
  
Thus, the required ratio is  
\[
P:Q = 5:4
\]  
  
Final Answer:  
\[
\boxed{5:4}
\]