Step 1: Understand the physical situation.
When a bullet is fired from a gun:
The bullet moves forward with high velocity.
The gun recoils backward with a much smaller velocity.
By the law of conservation of momentum, both acquire equal and opposite momentum.
Step 2: Write the relation for kinetic energy using momentum.
Kinetic energy in terms of momentum \(p\) and mass \(m\) is:
\[
KE = \frac{p^2}{2m}
\]
Thus, for the same momentum:
\[
\frac{KE_{\text{bullet}}}{KE_{\text{gun}}}
= \frac{m_{\text{gun}}}{m_{\text{bullet}}}
\]
Step 3: Substitute given masses.
\[
m_{\text{bullet}} = 50\text{ g} = 0.05\text{ kg}, \quad
m_{\text{gun}} = 2\text{ kg}
\]
\[
\frac{KE_{\text{bullet}}}{KE_{\text{gun}}}
= \frac{2}{0.05} = 40
\]
So,
\[
KE_{\text{bullet}} = 40 \times KE_{\text{gun}}
\]
Step 4: Use total kinetic energy.
\[
KE_{\text{bullet}} + KE_{\text{gun}} = 2050
\]
\[
40KE_{\text{gun}} + KE_{\text{gun}} = 2050
\]
\[
41KE_{\text{gun}} = 2050
\]
\[
KE_{\text{gun}} = 50\text{ J}
\]
Step 5: Find kinetic energy of the bullet.
\[
KE_{\text{bullet}} = 40 \times 50 = 2000\text{ J}
\]
Final Answer:
\[
\boxed{KE_{\text{bullet}} = 2000\text{ J}, \quad KE_{\text{gun}} = 50\text{ J}}
\]