Step 1: Use elastic collision formula for 1D.
For elastic collision with second body at rest:
\[
v_1 = \frac{m_1 - m_2}{m_1 + m_2}u_1
\]
Step 2: Substitute given values.
Here \(m_1 = 5\), \(u_1 = u\), and after collision:
\[
v_1 = \frac{u}{10}
\]
So:
\[
\frac{u}{10} = \frac{5 - m_2}{5 + m_2}u
\]
Step 3: Solve for \(m_2\).
Cancel \(u\):
\[
\frac{1}{10} = \frac{5 - m_2}{5 + m_2}
\]
Cross multiply:
\[
5 + m_2 = 10(5 - m_2)
\]
\[
5 + m_2 = 50 - 10m_2
\]
\[
11m_2 = 45
\Rightarrow m_2 = \frac{45}{11} = 4.09\,kg
\]
Final Answer:
\[
\boxed{4.09\,kg}
\]