A body of mass $(4m)$ is lying in $x-y$ plane at rest. It suddenly explodes into three pieces. Two pieces, each of mass $(m)$ move perpendicular to each other with equal speeds $(v)$. The total kinetic energy generated due to explosion is
Let $\overrightarrow{v}$ be velocity of third piece of mass 2m. Initial momentum, $\overrightarrow{p_i}=0$ (As the body is at rest) Final momentum $\overrightarrow{p_f}=0=mc\widehat{i}+mv\widehat{j}+2m\overrightarrow{v}$ According to law of conservation of momentum $\overrightarrow{p_i}=\overrightarrow{p_j}$ 0=mv$\widehat{i}+mv\widehat{j}+2m\overrightarrow{v}$ $\overrightarrow{v}=-\frac{v}{2} \widehat{i}-\frac{v}{2}\widehat{j}$ The magnitude of v' is $v'=\sqrt{\bigg(-\frac{v}{2}\bigg)^2+\bigg(-\frac{v}{2}\bigg)^2}=\frac{v}{\sqrt 2}$ Total kinetic energy generated due to explosion $=\frac{1}{2}mv^2+\frac{1}{2}mv^2+\frac{1}{2}(2m)v'^{2}$ $=\frac{1}{2}mv^2+\frac{1}{2}mv^2+\frac{1}{2}(2m)\bigg(\frac{v}{\sqrt 2}\bigg)^2$