Step 1: Understanding the Given Data
- Mass of the body: \( m = 2 \, \text{kg} \)
- Acceleration while sliding down: \( a = 4 \, \text{ms}^{-2} \)
- Inclination angle: \( \theta = 30^\circ \)
- Acceleration due to gravity: \( g = 10 \, \text{ms}^{-2} \)
Step 2: Finding the Net Force while Sliding Down
The equation of motion along the incline while sliding down is:
\[
mg \sin\theta - F_{\text{friction}} = ma
\]
\[
(2 \times 10) \sin 30^\circ - F_{\text{friction}} = 2 \times 4
\]
\[
10 - F_{\text{friction}} = 8
\]
\[
F_{\text{friction}} = 2 \, \text{N}
\]
Step 3: Finding the Required Force to Move Up
For moving up with the same acceleration:
\[
F_{\text{external}} - mg \sin\theta - F_{\text{friction}} = ma
\]
\[
F_{\text{external}} - 10 - 2 = 8
\]
\[
F_{\text{external}} = 20 \, \text{N}
\]
Step 4: Conclusion
Thus, the external force required to take the body up with the same acceleration is:
\[
\mathbf{20 \, \text{N}}.
\]