Let the masses of the bodies be $m$. Let the initial velocities be $u_1$ and $u_2 = \frac{1}{2}u_1$. Let the final velocities be $v_1$ and $v_2$. Coefficient of restitution $e = \frac{v_2 - v_1}{u_1 - u_2} = 0.5$. Since the masses are equal, we can use the following simplified equations for one-dimensional elastic collisions: $v_1 = \frac{u_1(m-em)+u_2 m(1+e)}{2m} = \frac{u_1+u_2+e(u_2-u_1)}{2}$ and $v_2 = \frac{u_1+u_2+e(u_1-u_2)}{2}$ If we use $u_2=\frac{u_1}{2}$ and $e=0.5$, then $v_2-v_1 = 0.5(u_1-\frac{u_1}{2})=0.5\frac{u_1}{2} = \frac{u_1}{4}$. Using Conservation of momentum: $mu_1+\frac{mu_1}{2} = mv_1+mv_2$ so $\frac{3u_1}{2}=v_1+v_2$. $v_2=v_1+\frac{u_1}{4}$. So $\frac{3u_1}{2}=2v_1+\frac{u_1}{4}$ so $2v_1=\frac{5u_1}{4}$ so $v_1=\frac{5u_1}{8}$ and $v_2=\frac{7u_1}{8}$. $v_2 - v_1 = \frac{1}{2}(u_1 - \frac{1}{2}u_1) = \frac{1}{4}u_1$ Also, from conservation of momentum, $m(u_1 + \frac{1}{2}u_1) = m(v_1 + v_2)$, so $v_1 + v_2 = \frac{3}{2}u_1$. Solving for $v_1$ and $v_2$, we get $v_1 = \frac{5}{8}u_1$ and $v_2 = \frac{7}{8}u_1$. The ratio of velocities is $\frac{v_1}{v_2} = \frac{5/8}{7/8} = \frac{5}{7}$.