Step 1: Escape velocity relation.
Escape velocity:
\[
v_e = \sqrt{\frac{2GM}{R}}
\]
Given initial velocity:
\[
u = \frac{v_e}{2}
\]
Step 2: Use energy conservation.
Total energy at surface:
\[
E = \frac{1}{2}mu^2 - \frac{GMm}{R}
\]
At maximum height \(R+h\), velocity becomes zero:
\[
E = -\frac{GMm}{R+h}
\]
Step 3: Substitute \(u = \frac{v_e}{2}\).
\[
\frac{1}{2}m\left(\frac{v_e}{2}\right)^2 - \frac{GMm}{R} = -\frac{GMm}{R+h}
\]
\[
\frac{1}{8}mv_e^2 - \frac{GMm}{R} = -\frac{GMm}{R+h}
\]
But \(v_e^2 = \frac{2GM}{R}\), so:
\[
\frac{1}{8}m\cdot \frac{2GM}{R} - \frac{GMm}{R} = -\frac{GMm}{R+h}
\]
\[
\left(\frac{1}{4}-1\right)\frac{GMm}{R} = -\frac{GMm}{R+h}
\]
\[
-\frac{3}{4}\frac{GMm}{R} = -\frac{GMm}{R+h}
\]
Step 4: Solve for height.
Cancel \(-GMm\):
\[
\frac{3}{4R} = \frac{1}{R+h}
\]
\[
R+h = \frac{4R}{3}
\Rightarrow h = \frac{4R}{3}-R = \frac{R}{3}
\]
Final Answer:
\[
\boxed{\dfrac{R}{3}}
\]