Question:

A body is projected vertically upwards from the surface of the earth with a velocity equal to half the escape velocity. If \(R\) is the radius of the earth, the maximum height attained by the body from the surface of the earth is

Show Hint

Use energy conservation for variable gravity problems: \(\frac{1}{2}mv^2 - \frac{GMm}{r} = \text{constant}\).
Updated On: Jan 3, 2026
  • \(\dfrac{R}{6}\)
  • \(\dfrac{R}{3}\)
  • \(\dfrac{2R}{3}\)
  • \(R\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Step 1: Escape velocity relation.
Escape velocity:
\[ v_e = \sqrt{\frac{2GM}{R}} \]
Given initial velocity:
\[ u = \frac{v_e}{2} \]
Step 2: Use energy conservation.
Total energy at surface:
\[ E = \frac{1}{2}mu^2 - \frac{GMm}{R} \]
At maximum height \(R+h\), velocity becomes zero:
\[ E = -\frac{GMm}{R+h} \]
Step 3: Substitute \(u = \frac{v_e}{2}\).
\[ \frac{1}{2}m\left(\frac{v_e}{2}\right)^2 - \frac{GMm}{R} = -\frac{GMm}{R+h} \]
\[ \frac{1}{8}mv_e^2 - \frac{GMm}{R} = -\frac{GMm}{R+h} \]
But \(v_e^2 = \frac{2GM}{R}\), so:
\[ \frac{1}{8}m\cdot \frac{2GM}{R} - \frac{GMm}{R} = -\frac{GMm}{R+h} \]
\[ \left(\frac{1}{4}-1\right)\frac{GMm}{R} = -\frac{GMm}{R+h} \]
\[ -\frac{3}{4}\frac{GMm}{R} = -\frac{GMm}{R+h} \]
Step 4: Solve for height.
Cancel \(-GMm\):
\[ \frac{3}{4R} = \frac{1}{R+h} \]
\[ R+h = \frac{4R}{3} \Rightarrow h = \frac{4R}{3}-R = \frac{R}{3} \]
Final Answer: \[ \boxed{\dfrac{R}{3}} \]
Was this answer helpful?
0
0