Potential energy in SHM is \( U = \frac{1}{2} k x^2 \). So,
\[
U_x = 9 = \frac{1}{2} k x^2 \Rightarrow x^2 = \frac{18}{k},\quad U_y = 16 = \frac{1}{2} k y^2 \Rightarrow y^2 = \frac{32}{k}
\]
\[
U_{x+y} = \frac{1}{2} k(x + y)^2 = \frac{1}{2} k(x^2 + y^2 + 2xy)
\]
But without the cross term, assume energy adds quadratically:
\[
U = \frac{1}{2} k(x^2 + y^2) = 9 + 16 = 25 \text{ J} \quad \text{(wrong)}
\]
Instead, total displacement:
\[
(x + y)^2 = x^2 + y^2 + 2xy = \frac{18 + 32 + 2\sqrt{18\cdot32}}{k} \Rightarrow x + y = \sqrt{x^2} + \sqrt{y^2}
\Rightarrow U = \frac{1}{2}k(x + y)^2 = 49 \text{ J}
\]