Step 1: The total force applied is \( F = 40 \, \text{N} \). The rope has a linear density \( \mu = 0.5 \, \text{kg/m} \), and the length of the rope is \( L = 3 \, \text{m} \). The total mass of the rope is \( m_{\text{rope}} = \mu L = 0.5 \times 3 = 1.5 \, \text{kg} \).
Step 2: The total force acting on the system is the sum of the applied force and the force due to the rope's mass. This gives us the total mass \( m_{\text{total}} = 18.5 \, \text{kg} + 1.5 \, \text{kg} = 20 \, \text{kg} \). The acceleration of the system can now be calculated using Newton’s second law: \[ a = \frac{F}{m_{\text{total}}} = \frac{40}{20} = 2 \, \text{m/s}^2 \]
Step 3: Using the equation of motion \( s = ut + \frac{1}{2} a t^2 \), where \( u = 0 \) (initial velocity) and \( s = 9 \, \text{m} \), we can solve for \( t \): \[ 9 = 0 + \frac{1}{2} \times 2 \times t^2 \] \[ 9 = t^2 \] \[ t = \sqrt{9} = 3 \, \text{s} \] Thus, the time taken for the block to move 9 m is \( 3 \, \text{s} \).
Three blocks of masses 2 m, 4 m and 6 m are placed as shown in figure. If \( \sin 37^\circ = \frac{3}{5} \), \( \sin 53^\circ = \frac{4}{5} \), the acceleration of the system is:
Given the function:
\[ f(x) = \begin{cases} \frac{(2x^2 - ax +1) - (ax^2 + 3bx + 2)}{x+1}, & \text{if } x \neq -1 \\ k, & \text{if } x = -1 \end{cases} \]
If \( a, b, k \in \mathbb{R} \) and \( f(x) \) is continuous for all \( x \), then the value of \( k \) is:
Given the function:
\[ f(x) = \begin{cases} \frac{2x e^{1/2x} - 3x e^{-1/2x}}{e^{1/2x} + 4e^{-1/2x}}, & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases} \]
Determine the differentiability of \( f(x) \) at \( x = 0 \).
A magnet suspended in a uniform magnetic field is heated so as to reduce its magnetic moment by 19%. By doing this, the time period of the magnet approximately
A Carnot heat engine has an efficiency of 10%. If the same engine is worked backward to obtain a refrigerator, then the coefficient of performance of the refrigerator is
Match the following physical quantities with their respective dimensional formulas.