Step 1: The total force applied is \( F = 40 \, \text{N} \). The rope has a linear density \( \mu = 0.5 \, \text{kg/m} \), and the length of the rope is \( L = 3 \, \text{m} \). The total mass of the rope is \( m_{\text{rope}} = \mu L = 0.5 \times 3 = 1.5 \, \text{kg} \).
Step 2: The total force acting on the system is the sum of the applied force and the force due to the rope's mass. This gives us the total mass \( m_{\text{total}} = 18.5 \, \text{kg} + 1.5 \, \text{kg} = 20 \, \text{kg} \). The acceleration of the system can now be calculated using Newton’s second law: \[ a = \frac{F}{m_{\text{total}}} = \frac{40}{20} = 2 \, \text{m/s}^2 \]
Step 3: Using the equation of motion \( s = ut + \frac{1}{2} a t^2 \), where \( u = 0 \) (initial velocity) and \( s = 9 \, \text{m} \), we can solve for \( t \): \[ 9 = 0 + \frac{1}{2} \times 2 \times t^2 \] \[ 9 = t^2 \] \[ t = \sqrt{9} = 3 \, \text{s} \] Thus, the time taken for the block to move 9 m is \( 3 \, \text{s} \).
A particle of mass \(m\) falls from rest through a resistive medium having resistive force \(F=-kv\), where \(v\) is the velocity of the particle and \(k\) is a constant. Which of the following graphs represents velocity \(v\) versus time \(t\)? 

Which of the following are ambident nucleophiles?
[A.] CN$^{\,-}$
[B.] CH$_{3}$COO$^{\,-}$
[C.] NO$_{2}^{\,-}$
[D.] CH$_{3}$O$^{\,-}$
[E.] NH$_{3}$
Identify the anomers from the following.

The standard Gibbs free energy change \( \Delta G^\circ \) of a cell reaction is \(-301 { kJ/mol}\). What is \( E^\circ \) in volts?
(Given: \( F = 96500 { C/mol}\), \( n = 2 \))