To determine the gain in surface energy when a big oil droplet is broken into smaller droplets, follow these steps:
Given:
Radius of the big droplet (\( R \)): \( 10 \, {cm} = 0.1 \, {m} \)
Number of small droplets (\( n \)): \( 1000 \)
Surface tension of oil (\( T \)): \( 0.1 \, {N/m} \)
Step 1: Calculate the Volume of the Big Droplet
The volume \( V \) of the big droplet is:
\[ V = \frac{4}{3} \pi R^3 = \frac{4}{3} \pi (0.1)^3 = \frac{4}{3} \pi \times 10^{-3} \, {m}^3 \]
Step 2: Volume of Each Small Droplet
Since the big droplet breaks into \( 1000 \) equal droplets, the volume of each small droplet \( v \) is:
\[ v = \frac{V}{1000} = \frac{\frac{4}{3} \pi \times 10^{-3}}{1000} = \frac{4}{3} \pi \times 10^{-6} \, {m}^3 \]
Let the radius of each small droplet be \( r \). Then:
\[ \frac{4}{3} \pi r^3 = \frac{4}{3} \pi \times 10^{-6} \]
\[ r^3 = 10^{-6} \Rightarrow r = 10^{-2} \, {m} = 1 \, {cm} \]
Step 3: Calculate the Surface Areas
Surface area of the big droplet (\( A_{{big}} \)):
\[ A_{{big}} = 4 \pi R^2 = 4 \pi (0.1)^2 = 4 \pi \times 10^{-2} \, {m}^2 \]
Total surface area of the small droplets (\( A_{{small}} \)):
\[ A_{{small}} = 1000 \times 4 \pi r^2 = 1000 \times 4 \pi (10^{-2})^2 = 1000 \times 4 \pi \times 10^{-4} = 4 \pi \times 10^{-1} \, {m}^2 \]
Step 4: Determine the Change in Surface Area
\[ \Delta A = A_{{small}} - A_{{big}} = 4 \pi \times 10^{-1} - 4 \pi \times 10^{-2} = 4 \pi (0.1 - 0.01) = 4 \pi \times 0.09 = 0.36 \pi \, {m}^2 \]
Step 5: Calculate the Gain in Surface Energy
The surface energy \( E \) is given by:
\[ E = T \times \Delta A = 0.1 \times 0.36 \pi = 0.036 \pi \, {J} \]
Approximating \( \pi \approx 3.14 \):
\[ E \approx 0.036 \times 3.14 \approx 0.11 \, {J} \]
Two soap bubbles of radius 2 cm and 4 cm, respectively, are in contact with each other. The radius of curvature of the common surface, in cm, is _______________.