Step 1: Free thermal expansion of bar.
\[
\Delta L_{free} = \alpha \, L \, \Delta T
\]
\[
= (20 \times 10^{-6})(1000 \, mm)(10)
= 0.2 \, mm
\]
Step 2: Compare expansion with gap.
Gap = 0.1 mm.
Free expansion = 0.2 mm.
Excess expansion blocked by wall = \(0.2 - 0.1 = 0.1 \, mm\).
Step 3: Mechanical strain induced.
\[
\varepsilon = \frac{\Delta L_{blocked}}{L} = \frac{0.1}{1000} = 1 \times 10^{-4}
\]
Step 4: Stress using Hooke’s law.
\[
\sigma = E \cdot \varepsilon = (100 \times 10^3 \, MPa)(1 \times 10^{-4})
\]
\[
\sigma = 10 \, MPa
\]
Step 5: Careful re-check with units.
Convert \(E = 100 \, GPa = 100 \times 10^3 \, MPa\).
Thus stress = \(100000 \times 10^{-4} = 10 \, MPa\).
(If small rounding adjustments considered, answer remains \( \approx 10 \, MPa\)).
Final Answer:
\[
\boxed{10 \, MPa}
\]