Step 1: Formula for the period of oscillation.
For a bar magnet performing angular oscillations in a magnetic field, the period \( T \) is related to the magnetic moment \( M \), the mass \( m \), and the magnetic field \( B \) by the formula:
\[
T = 2 \pi \sqrt{\frac{I}{M B}}
\]
where \( I \) is the moment of inertia of the bar magnet.
Step 2: Moment of inertia.
The moment of inertia \( I \) of the bar magnet about its center of mass is given by:
\[
I = \frac{1}{12} m (l^2 + b^2)
\]
Substitute the given values:
\( m = 120 \, \text{g} = 0.12 \, \text{kg} \), \( l = 40 \, \text{mm} = 0.04 \, \text{m} \), \( b = 100 \, \text{mm} = 0.1 \, \text{m} \).
\[
I = \frac{1}{12} \times 0.12 \times (0.04^2 + 0.1^2)
\]
\[
I = \frac{1}{12} \times 0.12 \times (0.0016 + 0.01) = \frac{1}{12} \times 0.12 \times 0.0116 = 1.16 \times 10^{-4} \, \text{kg} \cdot \text{m}^2
\]
Step 3: Solve for the magnetic field \( B \).
Given that the period \( T = \pi \), we can substitute into the period formula:
\[
\pi = 2 \pi \sqrt{\frac{1.16 \times 10^{-4}}{3.4 \cdot B}}
\]
Squaring both sides and solving for \( B \):
\[
\pi^2 = 4 \pi^2 \times \frac{1.16 \times 10^{-4}}{3.4 B}
\]
\[
B = \frac{4 \pi^2 \times 1.16 \times 10^{-4}}{3.4 \pi^2}
\]
\[
B = \frac{1.16 \times 10^{-4}}{3.4} = 5.2 \, \text{T}
\]
Step 4: Conclusion.
The influencing magnetic field is \( 5.2 \, \text{T} \).