Step 1: Translate statements into equations.
Let the counts be \(V, Y, R, G\). Then
\[
\begin{aligned}
\text{(i)}&:\ Y+2V=50,\\
\text{(ii)}&:\ V+G=50, \\
\text{(iii)}&:\ Y+R=50,\\
\text{(iv)}&:\ V+2R=50.
\end{aligned}
\]
Step 2: Express \(Y\) and \(R\) in terms of \(V\).
From (i): \(Y=50-2V\).
From (iii): \(R=50-Y=50-(50-2V)=2V\).
Step 3: Use (iv) to determine \(V\).
Substitute \(R=2V\) into (iv):
\[
V+2(2V)=50 \Rightarrow 5V=50 \Rightarrow V=10.
\]
Step 4: Find \(Y, R, G\).
\[
Y=50-2V=50-20=30,\qquad R=2V=20.
\]
From (ii):
\[
G=50-V=50-10=40.
\]
Step 5: Check total and map to percentages.
\[
V+Y+R+G=10+30+20+40=100.
\]
Hence the composition (and therefore the pie chart) is
\[
V:10%, R:20%, Y:30%, G:40%.
\]
Final Answer:
\[
\boxed{\text{Option (A)}}
\]