Step 1: Compute total series impedance.
\[
R' = 0.035 \times 400 = 14 \,\Omega
\]
\[
X_L = \omega L' = 2 \pi \times 50 \times (1 \times 10^{-3}) \times 400 = 125.66 \,\Omega
\]
\[
Z = R' + j X_L = 14 + j125.66
\]
Step 2: Compute shunt admittance.
\[
C' = 0.01 \times 10^{-6} \times 400 = 4 \times 10^{-6} \,\text{F}
\]
\[
Y = j \omega C' = j (2 \pi \times 50 \times 4 \times 10^{-6}) = j 0.0012566 \,\text{S}
\]
Step 3: Nominal-$\pi$ parameters.
\[
A = D = 1 + \frac{YZ}{2}
\]
\[
B = Z, C = Y \left(1 + \frac{YZ}{4}\right)
\]
Since $YZ \ll 1$, approximate:
\[
A \approx 1 + \frac{YZ}{2}
\]
Step 4: Maximum power transfer angle.
The maximum power transfer occurs when $P = \frac{V_S V_R}{|B|} \sin \theta$, hence maximum when $\theta = \angle A$.
\[
\theta \approx \tan^{-1}\left(\frac{\Im(A)}{\Re(A)}\right) = \tan^{-1}\left(\frac{\Im(1+YZ/2)}{\Re(1+YZ/2)}\right)
\]
\[
YZ = (j0.0012566)(14+j125.66) = -0.1578 + j0.0176
\]
\[
YZ/2 = -0.0789 + j0.0088
\]
\[
A \approx 0.9211 + j0.0088
\]
\[
\theta = \tan^{-1}\left(\frac{0.0088}{0.9211}\right) \approx 0.00956 \,\text{rad} = 2.07^\circ
\]
% Final Answer
\[
\boxed{2.07^\circ}
\]
In the circuit, \( I_{\text{DC}} \) is an ideal current source, the transistors \( M_1 \), \( M_2 \) are assumed to be biased in saturation wherein \( V_{\text{in}} \) is the input signal and \( V_{\text{DC}} \) is the fixed DC voltage. Both transistors have a small signal resistance of \( R_{ds} \) and transconductance of \( g_m \). The small signal output impedance of the circuit is:

Assuming ideal op-amps, the circuit represents:

Selected data points of the step response of a stable first-order linear time-invariant (LTI) system are given below. The closest value of the time constant (in seconds) of the system is:
\[ \begin{array}{|c|c|} \hline \textbf{Time (sec)} & \textbf{Output} \\ \hline 0.6 & 0.78 \\ 1.6 & 2.8 \\ 2.6 & 2.98 \\ 10 & 3 \\ \infty & 3 \\ \hline \end{array} \]