The time per instruction cycle in a pipelined system is given by: \[ {Cycle time} = \max({Stage delays}) + {Latch delay} \] Step 1: Given Data - Stage delays: \( 180, 250, 150, 170, 250 \) ns - Maximum stage delay: \( 250 \) ns - Inter-stage latch delay: \( 10 \) ns
Step 2: Compute Cycle Time \[ {Cycle time} = 250 + 10 = 260 { ns} \] Step 3: Compute Total Execution Time Since the pipeline fills in the first 5 cycles, the total execution time for \( n \) instructions is: \[ {Time} = ({Pipeline fill time} + (n - 1) \times {Cycle time}) \] \[ = (5 \times 260) + (999 \times 260) \] \[ = 1300 + 259740 = 261040 { ns} = 261.04 { µs} \] Thus, the answer is between \( 260.20 \) and \( 261.20 \) µs.
Consider a system with the following: - \(\mathbb{P} = \{ P_1, P_2, P_3, P_4 \}\) consists of all active processes in an operating system. - \(\mathbb{R} = \{ R_1, R_2, R_3, R_4 \}\) consists of single instances of distinct types of resources in the system.
The resource allocation graph has the following assignment and claim edges: Assignment edges: \[ R_1 \to P_1, \quad R_2 \to P_2, \quad R_3 \to P_3, \quad R_4 \to P_4 \] (The assignment edge \( R_1 \to P_1 \) means resource \( R_1 \) is assigned to process \( P_1 \), and so on for others.)
Claim edges: \[ P_1 \to R_2, \quad P_2 \to R_3, \quad P_3 \to R_1, \quad P_2 \to R_4, \quad P_4 \to R_2 \] (The claim edge \( P_1 \to R_2 \) means process \( P_1 \) is waiting for resource \( R_2 \), and so on for others.)
Which of the following statement(s) is/are CORRECT?
In a 4-bit ripple counter, if the period of the waveform at the last flip-flop is 64 microseconds, then the frequency of the ripple counter in kHz is ______________. {(Answer in integer)}
Consider the following C code segment:
int x = 126, y = 105;
do {
if (x > y)
x = x - y;
else
y = y - x;
} while (x != y);
printf("%d", x);
The output of the given C code segment is ____________. (Answer in integer)
The following two signed 2’s complement numbers (multiplicand \( M \) and multiplier \( Q \)) are being multiplied using Booth’s algorithm:
| Multiplicand (\( M \)) | Multiplier (\( Q \)) |
|---|---|
| 1100 1101 1110 1101 | 1010 0100 1010 1010 |
The total number of addition and subtraction operations to be performed is __________. (Answer in integer)
The maximum value of \(x\) such that the edge between the nodes B and C is included in every minimum spanning tree of the given graph is __________ (answer in integer).
Consider the following C program
The value printed by the given C program is __________ (Answer in integer).