The maximum principal stress criterion is used to determine the minimum shaft thickness. The total stress is composed of both the axial and torsional components.
1. The axial stress is given by:
\[
\sigma_{axial} = \frac{P}{A} = \frac{7.4 \, \text{kN}}{\pi \left( 0.02^2 \right)} = \frac{7400}{\pi \times 0.0004} \approx 5.91 \times 10^6 \, \text{Pa} = 5.91 \, \text{MPa}.
\]
2. The torsional stress is:
\[
\sigma_{torsion} = \frac{T}{J} \cdot r = \frac{148 \, \text{Nm}}{\frac{\pi t^3}{3}} \times 0.02.
\]
3. Using the maximum principal stress criterion, the total stress:
\[
\sigma_{total} = \sqrt{\sigma_{axial}^2 + \sigma_{torsion}^2}.
\]
Equating this total stress to the allowable stress of 100 MPa:
\[
100 = \sqrt{(5.91)^2 + \left( \frac{148}{\frac{\pi t^3}{3}} \times 0.02 \right)^2}.
\]
Solving for \( t \), we find the minimum thickness to be:
\[
\boxed{1 \, \text{mm}}.
\]