\(3sin^{-1}(3x-4x^3), x \in[-\frac {1}{2},\frac{1}{2}]\) prove.
\(3\,sin^{-1}(3x-4x^3), x \in[-\frac {1}{2},\frac{1}{2}]\)
To prove:
Let x = sinθ. Then, \(sin^{-1x}=\theta\)
We have,
R.H.S. = \(sin^{-1}(3x-4x^3)=sin^{-1}(2sin\theta-4sin3\theta)\)
=\(sin^{-1}(sin3\theta)\)
= 3θ
= \(3\,sin^{-1x}\)
= L.H.S
The elementary properties of inverse trigonometric functions will help to solve problems. Here are a few important properties related to inverse trigonometric functions:
Tan−1x + Tan−1y = π + tan−1 (x+y/ 1-xy), if xy > 1
Tan−1x + Tan−1y = tan−1 (x+y/ 1-xy), if xy < 1
Tan−1x + Tan−1y = tan−1 (x+y/ 1-xy), if xy < 1
Tan−1x + Tan−1y = -π + tan−1 (x+y/ 1-xy), if xy > 1
= x, if x∈[−π/2, π/2]
= π−x, if x∈[π/2, 3π/2]
=−2π+x, if x∈[3π/2, 5π/2] And so on.
= −x, ∈[−π,0]
= x, ∈[0,π]
= 2π−x, ∈[π,2π]
=−2π+x, ∈[2π,3π]
= x, (−π/2, π/2)
= x−π, (π/2, 3π/2)
= x−2π, (3π/2, 5π/2)