For isobaric expansion, the work done (\( W \)) is given by the equation:
\( W = P \Delta V \)
Where \( P = 2 \, \text{bar} = 2 \times 10^5 \, \text{Pa} \), and the volume change \( \Delta V = V_2 - V_1 = 0.6 \, \text{m}^3 - 0.5 \, \text{m}^3 = 0.1 \, \text{m}^3 \).
So,
\( W = 2 \times 10^5 \, \text{Pa} \times 0.1 \, \text{m}^3 = 20 \, \text{kJ}. \)
Thus, the work transfer is \( +20 \, \text{kJ} \).
LIST I | LIST II |
A. Subcooled water | I. 1 bar and 134°C |
B. Superheated steam | II. Dryness fraction = 1 and 100°C |
C. Steam at critical state | III. 20°C and 1.01325 bar |
D. Saturated steam | IV. 374.15°C and 220.8 bar |
Choose the correct answer from the options given below:
LIST I (Component) | LIST II (Equipment used in) |
A. Draft Tube | III. Francis Turbine |
B. Thermostatic Expansion Valve | II. Cold Storage |
C. Feed Water Heater | I. Thermal Power Plant |
D. Automatic Expansion Valve | IV. Central AC Plant |
LIST I (Type of the Matrix) | LIST II (Property) | ||
---|---|---|---|
A. | Symmetric Matrix | I. aij = aji, for values of i and j | |
B. | Hermitian Matrix | II. aij = āji, for values of i and j | |
C. | Skew-Hermitian matrix | III. aij = -āji, for values of i and j | |
D. | Skew-Symmetric matrix | IV. aij = -aji, for values of i and j |